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The addition of an organometallic reagent to an unsaturated olefii is generally difficult to control since

such an addition may lead to polymerisation of the olefin’ unless the final organometallic adduct is stabilized or

differs markedly from the starting one3. In this contex~ we have recently reported4 an enantioselective

carbolithiations of cinnamyl derivatives, mediated by a stoichiometic or catalytic amount of (-) sparteine6,

leading to the chiral carbometalated product in $5% to 95% ee. Moreover, when the alcohol moiety is protected

as a dimethyl methoxymethyl ether, the benzylic organolithium, when wartned to room temperature, undergoes

a 1,3-elimination reaction to yield the pure chiral tram disubstituted cyclopropane in 9570ee’.
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Scheme 1

Cinnarnyl amines also allowed a similar enantioselective addition of organolithium reagents4. From these

studies, we thought that the intramolecular chelation of the

absolutely necessary to avoid the polymerisation reaction2.
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benxylic organolithium by the heteroatoms was
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However, the additions of an allcyllithiumin the presence of (-) spanteine to 4-phenyl-3-buten-l-ol 1 and to 5-

phenyl-4-penten-l-ol 2 also lead to the carbometalated products of unknown absolute configuration in 70% ee8

without a trace of polymeric product.
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Scheme 2

These puzzling results let us to reconsider our basic idea on the necessary intramolecular chelation since in the

csrbolithiation reaction of 2, a non favorable seven-membered metalacycle should be formed before hydrolysis.

Moreover, recent reports have shown that the carbdithiation reaction of styrene derivative was also possible in

good chemicrd yield without anionic polymerisationg.

So, we decided to investigate the enantioselective carbolithiation of ~-substituted, non functionalized styrenes.

Addition of ~-methyl styrene to a solution of various alkyl lithium in hexane in the presence of 1 equiv of (-)

sparteine in 4 hours at -15°C leads, after hydrolysis, to the corresponding csrbometrdated product in good yield

and good enantioselectivity without polymerisation as described in Scheme 3.
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Scheme 3

From this Scheme, we can deduce that the intramolecular chelation is not necessary to prevent the

polymerisation (at least in hexane as solvent). The optical purities as well as the absolute configurations of 3

and 4 were determined by comparison with authentical samples’”, except for 5, the correlation of which was

made according to Scheme 4. In the case of the addition of nPrLi, the enantiomeric excess is lower (76%

instead of 85~o) since the preparation of this reagent required E~O as solvent, and in order to have good

enantioselectivities it was necessary to stripp off E~O before adding hexane as solvent4. Moreover, these three

carbometalated products were rdsoderivatized into the corresponding known acids” 6, 7 and 8, then reduced
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into the alcohols’ ’b”’z9, 10 and 11 in order to corroborate their optical purities via the Nh4R method described

in reference 8.
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A slightly lower enantiomeric excess, 70%, is obtained for 4 when the reaction is performed in the presence of a

catalytic amount of (-) sparteine (10%) after 12 hours at O“C. As we have previously described, the

stemchemistry of the olefm is cmcial for the enantioselectivhy of the carbolithiation. Indeed, whereas the

carbometalation of the E-p-methyl styrene gives the S alkylated product in 4 hours at -15°C (see Scheme 3), the

same reaction on the Z+methyl styrene leads to the opposite enantiomer (R )with a low enantiomeric excess

(28%) in 50% yield after 8 hours at O“C. The fact that the carbometalation reaction on the Z isomer (8 hours at

O°C)differs markedly in rate from the carbornetalation on the E isomer (4 hours at -15”C) led us to undertake a

kinetic resolution to other @Ucylated styrene derivatives, such as ~-ethyl styrene. Indeed, the addition of nBuLi

on this latter substrate 12 in a WZ ratio of 9W1O, leads to the carbometalated derivative at -10”C. After

hydrolysis, the corresponding product 13 is obtained in 87% yield with an enantiomeric excess of 78%, and the

Z isomer is still present in the crude reaction mixtmt in an extent of 7% (see Scheme 5). The S absolute

configuration as well as the enantiomeric excess of 13 were determined after derivatization into 14 and by

comparison with an authentictd sample’3.
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Thus, both 13 and 14 can be easily prepared in an enantioselective way, which represents an interesting entry to

the elaboration of the West fragment of a potent tripeptide immunomodulator’3.

The easy and straightforward enantioselective carbolhhiation of &substituted, non functionalized styrenes

allows the preparation of various chiral &dkylated benzyl derivatives in good enantiomeric excess without a



7526

traceof polymeric product. We m currently exploring this reaction on different substrates and studying the

diastereoselectivity generated at the benzylic center by reaction with different electrophiles.
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